NSB Cosmic Center Image

N.S.B. Cosmic Center

NSB Cosmic Center Image

Literary Adventures

This page will take you into pieces of literature that are carefully selected for their great content at the literary, scientific, or philosophical level. A short selection will be presented in full. A long one will be divided into sections that will be refreshed regularly. Emphasis and highlights are mostly ours, not made by the original author.

Here is our current selection:

Supernature By Lyall Watson

Part Two - Matter

5 - Matter And Magic

In theory, games such as roulette and dice depend only on chance, but if people believed this, gambling would soon die a natural death. Those who take part in horse racing, football, and poker clearly exercise a great deal of skill, and those who bet on the ability of their favorites also have to show some skill in assessment. But many of the most popular 'games of chance' survive purely because the gambler believes that he can somehow control their outcome. He believes that by manipulating the objects involved, either directly or from a distance, he can exert an influence that will be to his benefit. He calls this influence luck, but it looks very much like psychokinesis.

Richard Taylor recently asked subjects in his laboratory to guess the sequence of colors in a shuffled pack of playing cards. After the first run, those with high scores were separated from the others, and in following tests the 'lucky' ones continued to do much better than the 'unlucky' group. Taylor cautiously concluded that 'this data provides some empirical support for the popular notion of luck'. (315) Similar evidence led the Director of the Netherlands Foundation for Industrial Psychology to say, 'There are clear indications that some people have a certain flare for attracting good fortune.' (326)

These are valid comments, but both just miss the point that becomes clear as soon as one takes Taylor's test just one stage further. If a group of subjects are selected at random following the first run, regardless of their score, and told that they have done exceptionally well and are very lucky, this group continues to score significantly better than the others. Luck, it seems, is a state of mind.

All casinos know that certain individuals keep on winning slowly and consistently, and now the staff of a gambling magazine have produced a book that gives detailed instructions on how to join that fortunate few. They have examined the methods of laboratory investigation into psychokinesis and adapted them to the casino environment. Included in their advice is the importance of cultivating the proper attitude for winning, which they describe as 'confident, relaxed, and almost playful'. (283) We are still a long way from a situation where gambling houses are put right out of business by an invasion of parapsychologists, but there are signs that a few people are beginning to learn how to tip the odds in their favor.

For psychokinesis to be of any real use in gambling, it would have to be strong enough to move dice and balls. This is already a highly developed talent and it would seem to be more useful to start a survey of PK in action with examples at a molecular level. The objects most easily influenced are those already moving or in a state of disequilibrium; in our technology, few unstable systems are more common than silver nitrate in the emulsion of unexposed photographic film.

In the latter part of the nineteenth century, during an occult craze that had thousands tapping tables and pushing planchettes over ouija boards, another popular pastime was spirit photography, in which they tried to get pictures or 'psychic images' to appear on photographic plates. Many claimed success, but not one of the results really stood up to close investigation, and interest waned. In Japan between 1910 and 1913, Tomokichi Fukurai made what seems to be the first scientific investigation of pictures produced by the mind. He succeeded in getting thought images transferred directly onto dry, wrapped photographic plates under apparently well-controlled conditions, but little attention was given to his results until the advent of the incredible Ted Serios.

Thoughtography

Serios was born in 1918 in Kansas City, Missouri, the son of a Greek cafe owner. In 1963 he was an unemployed, often drunken, ex-hotel porter in Chicago when he met and impressed Jule Eisenbud, Professor of Psychiatry at the Medical School in Denver. Eisenbud put Serios through three years of intensive investigation and proved beyond reasonable doubt that he can produce recognisable images of distant objects just by staring into cameras. In front of scores of reputable witnesses, in a variety of carefully controlled situations, Serios has made hundreds of pictures of buildings, people, landscapes, rockets, buses, and racing cars.

He has been stripped to the skin, medically examined, X-rayed, sewn into a restraint suit that allowed him to move nothing but his head, and tested with cameras and film provided by independent and critical observers. In spite of all precautions, and without touching any of the apparatus involved, he still succeeds in producing his 'thoughtographs'. (96) The full details of test situations, the testimony of witnesses, and the pictures themselves can all be found in Eisenbud's book, but it is worth looking at some of the results in relation to what we now know about psychokinesis.

Magnetic fields seem to have no effect on Serios. He has produced his pictures inside a field of twelve hundred gauss, which is thousands of times stronger than the earth's field, and inside a Faraday cage that reduced the natural field to one third its normal strength. He has also been tested inside the 5-inch-thick steel walls of a radiation counting chamber with a sensitive crystal pickup designed to detect electromagnetic radiation. It found nothing unusual when Serios was producing his pictures just eighteen inches away. He has been able to get pictures when the camera was pointed at him through half an inch of lead-impregnated glass in the window of a hospital chamber designed to exclude X radiation. Infrared and ultraviolet were also excluded when he worked through barriers of wood and plastic.

These conditions virtually dispose of the possibility of any of the common kinds of electromagnetic radiation, from long, radio waves to short, gamma waves, being responsible for the pictures. It would be fascinating if Serios could be examined in Russia by the Sergeyev Detector to see if he produced the same reactions as Nelya Mikhailova, but the chances of co-operation at this level seem remote.

We know a little about the physiology of thought pictures. While working, Serios usually went into a state of 'intense concentration, with eyes open, lips compressed, and a quite noticeable tension of his muscular system. His limbs would tend to shake somewhat, as if with a slight palsy, and the foot of his crossed leg would sometimes begin to jerk up and down a bit convulsively. His face would become suffused and blotchy, the veins standing out on his forehead, his eyes visibly bloodshot.' During all tests he drank heavily and his heartbeat often ran very high. It is clear from this description that Serios builds up the same kind of rage as Mikhailova, but in his case it often broke out into abuse and attacks on the cameras that would not cooperate with him. There seem to be good grounds for the assumption that both operated on the same principle. The Russian demonstrations tell us little about the mental factors involved, but in the pictures of Ted Serios we have a vivid, ready-made analysis of his state of mind.

Eisenbud says that Serios sometimes seems to have control over the subject matter of his pictures, but that most of the time Ted appeared to act like the passive observer of unidentified floating objects for which his mind was merely a reflecting screen. Sometimes there was conflict between images that he was consciously aiming at and other images that intruded despite his strongest efforts to keep them out, and Ted would act 'like a slightly exasperated referee in a boxing match between two youngsters that can't quite keep to the rules'. It seems clear that the pictures are expressions of his personality.

When asked to produce a picture of the Arc de Triomphe, Serios would come up with a picture of a Triumph motorcar, in which he was far more interested. Cars and buildings are recurrent themes in his pictures. He has produced recognisable shots of Westminster Abbey, Munich's Frauenkirche, and the Denver Hilton Hotel. These show great detail, but the really interesting thing about them is that they also include detail that never existed and shadows that could not exist, taken from vantage points that would only be possible for a camera in a balloon. The source of the image seems to be something that Serios has seen in real life or in a photograph, but that has been hidden away in his unconscious and modified by memory and imagination.

Psychoanalysis of Serios indicates immaturity in many ways, and once again we find a link between psychokinesis and childlike behavior. A recent survey of children's imagination has revealed that a surprisingly large number of them have what is known as eidetic imagery. This is the ability to shut the eyes after looking briefly at a picture and still retain a vivid visual image of what has been seen. (130) The fact that the image is real and detailed has been clearly demonstrated in a most impressive way. A drawing of a man's face was broken down into a large number of meaningless squiggles and then split into two separate patterns that, on their own, meant nothing.

The children were briefly shown one of the patterns and then allowed to look for a longer time at the other. Those with eidetic ability were able to summon up an image of the first pattern, mentally superimpose it on the second, and see the original face. In most of the children tested, images lasted about ten minutes, but others retained them for weeks. As the images faded, they transformed themselves like cinematic cartoons until they bore only a tenuous relationship to the original. This is exactly what happens to the pictures that Ted Serios produces. As children grow older and their minds become occupied with the paraphernalia of education, they seem to lose the eidetic ability, but in a few adults, such as Serios, who have little formal education and a simple view of life, the ability is retained.

This offers us a mechanism of mind capable of the precise visual recall necessary to produce accurate pictures, but it does not solve the problem of transmitting the pictures to film. We know that it helps to 'become as little children', but we are still no closer to an understanding of the physics involved. Actually, as it is the emulsion on the film that is being affected, it is more of a chemistry problem. Perhaps the answer lies in other studies, of the influence of PK on chemical reactions.

Bernard Grad of McGill University has done pioneer work in this field. His subject was a faith healer who claimed to be able to cure disease by the biblical method of 'laying on of hands'. In a preliminary test involving three hundred mice with identical injuries, those held by the healer for fifteen minutes a day did in fact heal more quickly than those held by other people. (127) Grad tried to expose this ability to more critical analysis by narrowing down its effect in an ingenious experiment with barley seeds. The seeds were treated with salt and baked in an oven for long enough to injure but not kill them. Then twenty seeds were planted in each of twenty-four flower pots and watered each day. The water to be used was taken straight from a tap into two sealed glass bottles, and each day the healer held one of these in his hands for thirty minutes. An experimental procedure was designed so that no person knew which plants were being given the treated water, but after two weeks it was found that those given the benefit of the healer's hand on their water supply were not only more numerous but also taller and gave a higher yield. (124)

Grad tested the treated water and found no major changes, but a later analysis showed that there was a slight spreading between the hydrogen and oxygen atoms. (125) The change in what we know to be an unstable molecule was apparently triggered by the action of an individual human field. Following this clue, Grad tried to assess the personality involved in this healing response. He had water for a second barley-seed test treated by three different people. One was a psychiatrically normal man, one was a woman with a strong depressive neurosis, and the third was a man with psychotic delusional depression.

The water treated by the normal man produced seeds that showed no difference from control ones, but the growth of all seedlings that received water handled by the depressed patients was greatly retarded. (126) The discovery of a negative as well as a positive response is important. It is conceivable, even in an experiment as carefully contrived as this one, that some factor could have been overlooked and that the positive result had nothing to do with the healer. But when a negative subject - a sick person - produces an appropriately negative response, then the original premise is greatly strengthened and the case for the healer looks good.

In this example, the man exercising his influence never saw the plants at all; he charged the water, and it did the rest for him. In an experiment in France, attempts were made to affect a living organism directly. (17) At the Institute of Agronomy in Bordeaux, two kinds of parasitic fungi - Stereum purpureum and Rhizoclonia solani - were seeded onto a growth medium in glass dishes, and for fifteen minutes a day the experimenters sat and stared at the dishes and tried to inhibit their growth by concentration.

Special care was taken to ensure that the fungi were genetically pure, that the composition of the growth media was identical and that all dishes were kept at the same temperature and humidity. In thirty-three out of thirty-nine tests the fungi were inhibited, as compared with control dishes, to a degree that gave odds of many millions to one against chance. There can be little doubt that, for these two fungi at least, man can influence growth just by being nearby for a short while each day.

Gardeners have always contended that the exact time of planting is important, and our new knowledge of lunar rhythms has begun to make sense of their old superstitions about planting seeds only at the full moon. Now it seems that there might be something in the idea of the proverbial 'green thumb'. There are certainly some people who have an almost magical ability to make things grow, while others using exactly the same methods and spending just as much time in their gardens end up with nothing but withered leaves and aphids.

The good gardeners may generate a field that has a beneficial effect on plant growth. And it is by no means impossible that a variant of this field could be equally beneficial to human beings. There are people who even in a crowd seem to radiate powerful goodwill or equally powerful evil. We are not a great deal nearer understanding this effect, but the experiments of Grad and those on the fungi make it impossible to deny that such effects could exist.

The inhibition of fungus, like the growth of barley seeds, could have been caused by a molecular change in the structure of water, but there is one experiment in which the induced change is behavioral and must be due to more complex chemical effects.

Nigel Richmond tried exerting his will power over Paramecium caudatum, the little, free-swimming protozoan that rows itself along through the water of stagnant pools like a tiny blob of transparent jelly equipped with a thousand fluttering eyelashes. They are probably the most businesslike of all the single-celled animals, gliding purposefully around at speeds of almost one tenth of an inch per second. Richmond watched them through the eyepiece of a microscope that was divided by cross hairs into four equal segments. He located a Paramecium that looked as though it was about to go somewhere, fixed it at the center of his sights, and tried to make it move into one of the four segments chosen at random.

In three thousand such trials, he was successful with a score of ten million to one against chance. (277) Paramecium normally finds its way around by a trial-and-error system of swimming until it hits an obstruction or gets into an area that is too hot or too cold, too acid or too alkaline, then it backs out a little way and tries again. This avoiding reaction goes on until it gets away from an unfavorable area. So the animal, which knows only what it doesn't like, is a random system under normal circumstances and therefore a perfect surface on which PK can work by just tripping a balance minutely. It seems that man can do this with his mind.

These PK effects are being demonstrated by experimenters who have chosen to work in the fringe field of parapsychology. It is almost impossible to get finance for this kind of research; experiments are long and often very tedious, results are meager and difficult to publish, and scorn is plentiful and easy to find. It is safe to assume that anyone doing work in this area is an unusual person to begin with, so we cannot hold up Richmond, for instance, as proof that anyone can produce PK results. But even he came to the field without special training, so it is likely that with the right sort of approach, most people could do these things. If it is true that everyone has a latent PK ability, then a new question arises: Why? What do we get out of it? Gambling may be fun, but it is not a biological necessity. Pushing Paramecium around may be good for the ego, but it does not have real survival value. So why should evolution have given us this talent? The answer could be that there is a feedback and that the force field that carries our influence to the environment also brings information from it.

Hydra had nine heads, and whenever Hercules cut one off, two grew in its place. In the shallow water of unpolluted streams there is a naked little polyp that has the same ability and the same name. Hydra pirardi is just half an inch long with a body thin as thread that ends in five frayed tentacles. It has a marked preference for light and finds it in the same negative way as Paramecium. When a shadow, even that cast by its own body, reaches one of the tentacles, Hydra withdraws the arm abruptly and moves in the other direction. Its whole body is supersensitive to light, and yet it has no eyes or eyespots or light-sensitive cells of any kind. Light instead produces a chemical reaction in its body fluid--the viscosity of the protoplasm changes, fats saponify, and enzymes are inactivated. When light is removed, all these processes are reversed and the animal moves away and back into the light again. (38) This sensitivity is probably not confined to freshwater polyps.

Eyeless Sight

When the first white men arrived in Samoa, they found blind men that could see well enough to describe things in detail just by holding their hands over objects. In France just after the First World War, Jules Remain tested hundreds of blind people and found a few that could tell the difference between light and dark. He narrowed their photosensitivity down to areas on the nose or in the fingertips. In Italy the neurologist Cesare Lombroso discovered a blind girl who could 'see' with the tip of her nose and the lobe of her left ear. When a bright light was shone unexpectedly on her ear, she winced. In 1956 a blind schoolboy in Scotland was taught to differentiate between colored lights and learned to pick out bright objects several feet away. In 1960 a medical board examined a girl in Virginia and found that, even with wads of bandage and tape over her eyes, she was able to distinguish different colors and read short sections of large print. (95) The phenomenon is obviously not new, but it has reached new peaks of sensitivity in a young woman from a mountain village in the Urals.

Rosa Kuleshova can see with her fingers. She is not blind, but growing up in a family of blind people she learned to read Braille to help them and then went on to teach herself to do other things with her hands. In 1962 her physician took her to Moscow, where she was examined by the Soviet Academy of Science and emerged a celebrity, certified as genuine. (161) The neurologist Shaefer made an intensive study with her and found that, securely blindfolded with only her arms stuck through a screen, she could differentiate among three primary colors. To test the possibility that the cards reflected heat differently, he heated some and cooled others, without affecting her response to them. He also found that she could read newsprint and sheet music under glass, so texture was giving her no clues. Tested by the psychologist Novomeisky, she was able to identify the color and shape of patches of light projected onto her palm or portrayed on an oscilloscope screen.

In rigidly controlled tests, with a blindfold and a screen and a piece of card around her neck so wide that she could not see round it, Rosa read the small print in a newspaper with her elbow. And, in the most convincing demonstration of all, she repeated these things with someone standing behind her pressing hard on her eyeballs. (281) Nobody can cheat under this pressure; it is even difficult to see clearly for minutes after it is released.

Rosa really started something in Russia. Following her success, surveys were made and it was found that about one in six people could learn to recognise the difference between two colors after only an hour's training. Novomeisky soon had eighty students attending his classes in eyeless sight. They agreed that colors have textures that are more or less smooth to the touch. Yellow is very slippery, red is sticky, and violet has a braking effect on the fingers. (231) With the colored papers in insulated trays, they could feel these effects in the air above the cards.

These students all had perfectly good eyes without their blindfolds, but at the Sverdlovsk Institute the same skills are being taught to the blind. Many sightless people say during these lessons that they were always aware of the difference in feel between the colors but that nobody ever told them what these meant. Some of the more advanced blind children at the Institute are reading colors through copper plate--they are 'seeing' things invisible even to their teachers.

If light affects the chemistry of Hydra sufficiently to move it into a favorable environment, it does not seem unreasonable to assume that the body fluids of man could have some similar sensitivity. The fact that blind children are 'seeing' with their ears and tongues and the tips of their toes suggests that there are no special sensory cells at work but that the ability is scattered throughout the body and is one common to all cells. If this is true, it is possible that different frequencies and patterns of light affect the chemistry in different ways and that one can learn to appreciate this difference and distinguish among the sources of light. This explains why the Russians have found that the ability is best in bright light, and fades, exactly like normal sight, as darkness falls. But it does not explain why insulated trays help to broadcast the effect at a distance or why it fails when the objects, or the hands of the person, are electrically grounded. This may be where psychokinesis comes in.

Once again the ability is most strongly manifest in children and reaches a peak at the age of eleven. It could be that the human field plays a vital role in this kind of sensing, broadcasting in much the same way as the bat's sonar system, picking up echoes and translating them into meaningful patterns. When one of our primary senses fails, this branch of Supernature takes over to supplement the missing faculty, but even in normally sighted people it could be 'feeling' the area in our immediate vicinity like the whiskers of a cat, giving us information that could be vital for survival.

If we do have a physiological response to light and this varies with the frequency of the light concerned, then this would explain some of the mystic values attached to colors. The apparent color of an object depends directly on the wavelength of the light it reflects, so it is possible that this physical difference could affect us in other ways. Manufacturers have discovered by trial and error that sugar sells badly in green wrappings, that blue foods are considered unpalatable, and that cosmetics should never be packaged in brown.

These discoveries, given such commercial impetus, have grown into a whole discipline of color psychology that now finds application in everything from fashion to interior decoration. Some of our preferences are clearly psychological. Dark blue is the color of the night sky and therefore associated with passivity and quiescence, while yellow is a day color with associations of energy and incentive. For primitive man, activity during the day meant hunting and attacking, which he soon saw as red, the color of blood and rage and the heat that came with effort. So it was natural that green, the complementary color to red, should be associated with passive defense and self-preservation. Experiments have shown that colors, partly because of their psychological associations, also have a direct physiological effect.

People exposed to bright red show an increase in respiration rate, heartbeat, and blood pressure; red is exciting. Similar exposure to pure blue has exactly the opposite effect; it is a calming color. Because of its exciting connotations, red was chosen as the signal for danger, but closer analysis shows that a vivid yellow can produce a more basic state of alertness and alarm, so fire engines and ambulances in some forward communities are now rushing around in bilious hues that stop the traffic dead.

Aesthetic, learned responses to color and more primitive, instinctive reactions have been combined into a very sensitive test of personality. The Luscher Color Test was developed in Basel; it involves selection of personal preferences from a panel of twenty-five different hues. (301) Dark blue is said to represent 'depth of feeling', bright yellow 'spontaneity', orange-red 'force of will', and so on. On the surface this sounds a little facile and suspiciously like the popular psychology of a newspaper horoscope, but the test concerns itself more with the order of preference and the detailed significance of color combinations. It is finding wide and enthusiastic reception in medicine, psychiatry, marriage guidance, and personnel selection.

A person's choice of color, in this test or for wallpaper in his bedroom, seems to be guided by the effect the color has on him, and can be used as an indication of his state of mind. A trained observer looks at the color and the person together and, by virtue of his special knowledge, can describe the connections between them. But we all have responses of the 'My, that color suits you' kind. This could be because our own psychological reaction to that color agrees with our subjective assessment of that person's character, but the fact that there is usually widespread agreement about the combination suggests that something more basic is involved. I suggest that the principle of resonance is at work and that the wavelength of the color and the frequency of the person's field are in sympathy when we find their combined effect harmonious. This is a wildly mystical notion, fully in keeping with all the old superstitions about color, but it feels right to me when I look at the problem of color and camouflage.

The eggs of the lapwing plover are mottled, like the ground on which they rest; the wings of the carpet moth have a broken pattern, like the lichen-covered bark of its favorite trees; the body of the copperhead viper is a patchwork of hues exactly like the leaf litter in which it lives. All these wonderful effects serve the purpose of concealment and have been evolved over millions of years of natural selection, but they were not produced by the animals themselves. The colors and patterns cannot be seen by the animal wearing them; their effect is visible only at a distance, so an outside agency in the form of a predator has to come along like an art critic and pick out the least successful camouflage patterns, leaving the better ones alive to produce others of their kind.

This process works well over long periods of time, in which adaptations occur over thousands of generations, but some species produce instant changes in their camouflage patterns. A chameleon very quickly takes on the pattern and the color best suited to any background on which it finds itself. Part of this ability depends on what it is able to see around it, but a completely blind chameleon still takes on the camouflage appropriate to its surroundings. It produces a pattern that, from a distance, harmonises with the environment. This has long been a problem in biology, and I see no way of solving it now unless one assumes that there is a reciprocal interaction between the animal and its habitat.

One has only to watch a chameleon in action to realise that it is not a matter of trial-and-error matching, of producing a black stripe on the tail because there is a corresponding black stripe just there on the background. What the reptile does is to assume a pattern that blends with the black stripe; it may not even be the same color, but it is always one that fits so well with the background that it is naturally congruous. The blind chameleon 'suits' its surroundings; it does so in a flash, and from a distance the effect is perfect. It seems to me that this harmony can be explained only by assuming the existence of something like the life field, which picks up the frequency of the environment and translates this into an appropriate and resonant frequency of its own.

If such an ability exists, it could account for a phenomenon that is a cause of dissension even among occultists. Some claim that, just by holding an object, they can get information about its previous owners. Dealers in antiquities, whose livelihood depends on assessing objects correctly, will often just hold an Egyptian bronze cat or a piece of Mexican jade in their hands and say that it 'feels right'. They may be responding to any number of cues associated with the object, but can seldom point to any one as positive proof of authenticity, preferring to rely on a sense of 'rightness' acquired by exposure to other objects with established pedigrees. This subliminal sensitivity is not uncommon, and although it is almost impossible to prove, it seems reasonable to assume that people leave some kind of mark on things around them. The alleged ability to read these traces has been called psychometry.

Psychometry

A bloodhound can detect the traces of a particular person in a room long after he has left it, perhaps even after he has died elsewhere. The psychometrist claims to do the same, but not by smell. If a healer changes the structure of water just by holding it in his hand for half an hour, what effect does he have on a wristwatch he wears for half a lifetime? If a barley seed can tell the difference between ordinary and handled water, is it unreasonable to assume that a man can distinguish a brand-new object, untouched by human hand, from one that has been fondled for twenty years? I believe that there are differences and that they are discernible, but proving this is another matter.

There have been casual tests made by presenting objects for psychometry in sealed containers, but no good, controlled investigation has yet been made. I predict that when one is, it will provide evidence of our ability to detect traces of human contact with things, but that there will be a limit to the amount of information we can get in this way. A fox can tell from traces on a tree not only that there is a male in the territory but who he is and what he last had to eat. Our territorial displays are now predominantly visual: the initials carved on the tree include a date and perhaps even an address, but there must have been a time when early man, with a comparatively poor sense of smell, could have made good use of a talent such as psychometry. (194) There are people today who claim to be able to tell the sex of the person who last used a particular Stone Age hand ax. This might once have been a very useful piece of information.

The nearest we can get to some sort of understanding of psychometry is an extraordinary series of experiments still going on in Czechoslovakia. They began with Robert Pavlita, design director of a textile plant near Prague. He invented a new weaving process that was so successful he could afford to retire and devote all his attention to his hobby of metallurgy. This continued until he discovered that an alloy of a particular shape had strange properties. If handled often, it seemed to accumulate energy and to attract even non-magnetic objects. This sounds like electrostatic energy, which can be built up by friction in amber until it is strong enough to pick up paper, but static electricity does not work under water--and Pavlita's 'generator' does.

He took it to the physics department at Hradec Kralove University. There they sealed it on his instructions into a metal box alongside a small fan driven by an electric motor. Pavlita stood six feet away and did no more than stare hard at his generator. After a while the blade on the fan began to slow down, as though the current had been cut off; then it stopped altogether and began to rotate in the opposite direction. (233) For two years the department worked with him to try to unravel the mystery, but got nowhere. It has nothing to do with static electricity, air currents, temperature changes, or magnetism, but it works, and they now have a whole collection of generators in a variety of shapes that look like miniature metal sculptures by Brancusi. All of them have the same inexplicable ability to store energy from a particular person that can be released later to do a particular job, such as driving an electric motor.

At this point the government stepped in and appointed the physiologist Zdenek Rejdak to investigate the claims. He could find no indications of fraud and continued to work with Pavlita. Together they produced a generator shaped like a doughnut that killed flies placed inside the ring; then they went on to build a square one that accelerated the growth of bean seeds when placed in a pan of soil. And finally they turned out a small one that could be dropped into water polluted by factory effluent and would leave it crystal clear in a short while. An official chemical analysis of the water concluded that it could not have been purified with a chemical agent and added the splendid comment that the molecular structure of the water was slightly altered. Again the fact crops up, and we find reactions working first on the instability of the universal trigger substance--water.

So far the only theory put out about the generators is that their secret lies in the form, which is critical, and that only one configuration can produce a particular effect. These developments are very difficult to follow from a distance--as yet, no details of any of the generators have been published, but Pavlita has said that he got his original description and inspiration from an ancient manuscript, and we know that the libraries of Prague abound in untranslated and unexplored texts of the alchemists.

Alchemy

Alchemy flourished until 1661, when Robert Boyle published the Sceptical Chymist and demolished the old, Aristotelian idea of the four 'elements'--fire, earth, air, and water. Eighty years later Black introduced quantitive chemistry, and soon after that Priestley discovered oxygen and Lavoisier< analysed air and water. This chemical revolution swept away the romance and adventure of the alchemist's quest and ushered in a new objectivity. The idea of converting one element into another was laughed out of the laboratory until in 1919 Lord Rutherford used alpha particles from a radioactive source to bombard nitrogen and turn it into oxygen. Today, with instruments such as the strong-focusing synchrotron, the transmutation of metals has become commonplace and the alchemists begin to look quite good.

There were two arms of alchemy, one outward and concerned with the attempt to find the Philosopher's Stone, and the other hidden and more concerned with the development of a devotional system. The mundane transmutation of metals was merely symbolic of the transformation of man into something more perfect, through an exploration of nature's potential. The psychologist Jung realised this and regarded alchemy as the predecessor more of modern psychology than of modern chemistry. In his autobiography he makes it clear that he considers the roots of his psychology of the unconscious to have been firmly planted in the alchemical treatises that he spent ten years of his life studying. The elusive Stone was credited not only with the power of turning base metals into gold, but with the power also to prolong human life indefinitely. Colin Wilson describes this aspect of the search as 'man's attempt to learn to make contact, at will, with the source of power, meaning and purpose in the depths of the mind, to overcome the dualities and ambiguities of everyday consciousness'. (342)

The origins of alchemy lie in early agricultural communities, when technology had not yet been segregated from other aspects of daily life and the craftsmen who made metal farming implements and the dyes of weaving carried out their trades to the accompaniment of religious and magical rites. The Egyptians, the Greeks, and the Arabs all contributed their skills and philosophies, and some great discoveries were made. In the Bagdad Museum are some stones found in a remote part of Iraq and classified as 'ritual objects', but that have now been shown to be the cores of electric batteries invented two thousand years before Galvani. (240) Some pieces of bronze, dredged up off the shores of Greece at Antikythera and dated sixth century BC, turn out to be components of an early computer for calculating astronomical positions. (333) So many of our proudest new achievements seem to have been anticipated by the alchemists and their contemporaries that one wonders what other lost skills we have yet to rediscover.

In the Mayan city of Chichen Itza, in Yucatan, are hundreds of feet of reliefs, many carved almost in the round, by a people without metal tools. In the walls of the Incan city of Cuzco, in Peru, are vast blocks of stone of irregular shape that have been so perfectly cut that they jigsaw together without room to fit a knife blade between them. (290) Engineers and architects stand in awe of these achievements, which, with all our technical skills, we find hard to duplicate today. It may well have been done by a scientific development that has since been lost and smacks almost of psychokinesis. The Incas may have known how to soften stone. Colonel Fawcett, the British explorer who ultimately disappeared into the jungles of the Amazon, records in his diaries that on a walk along the river Perene, in Peru, a pair of large Mexican-type spurs were corroded to stumps in one day by the juice from a patch of low plants with red, fleshy leaves. A local rancher described them as 'the stuff the Incas used for shaping stones'.

There are reports, too, of a small, kingfisher-like bird, probably the white-capped dipper Cinclus leucocephalus, which nests in spherical holes in the Bolivian Andes and bores these out of solid rock on the banks of mountain streams by rubbing a leaf on the stone until it is soft and can be pecked away. It seems that the Incas knew enough about chemistry to extract and distil the same substance. An excavation of a burial ground in central Peru turned up an earthenware jug containing a black viscous fluid that, when spilled on the ground, turned the rocks on which it fell into a soft, malleable putty.

This is the kind of discovery that most delighted the alchemists. In the course of working toward a higher consciousness, they learned almost by accident how to control matter and to liberate energy, so it is by no means impossible that in one of their texts are instructions for making generators like those of Robert Pavlita. Perhaps one of them was long and thin and looked like a magic wand.

One thing magic and science have in common is that both operate on the assumption that there is some scheme of order and regularity in the universe. Both attempt to discover this scheme by establishing relationships between things that are superficially different, and by analogical reasoning. The search for order is the only way life can survive in a cosmos tending toward maximum disorder. In man the search becomes more complex, because he looks not only for order but for meaning, so that he may be sure of being able to rediscover or even re-create that order. Superstition is one of the prices we pay for our habit of constantly scanning for patterns in everything. As Konrad Lorenz puts it, magic rituals have 'a common root in behaviour mechanism whose species-preserving function is obvious; for a living being lacking insight into the relation between causes and effects it must be extremely useful to cling to a behaviour pattern which has once or many times proved to achieve its aim, and to have done so without danger.' (203) In other words, if success follows a complex set of actions and you do not know which parts of the whole performance were the vital ones, it is best to repeat all of them exactly and slavishly every time, because 'You never know what might happen if you don't.'

So the Pedi, in South Africa, believe that infection can be cured by eating grain that has been chewed by a cross-eyed child and hung for three days in a gourd shaped like a snake that is suspended from a particular tree that grows near the water. And they are right, because under these conditions the grain grows a mold like Penicillium, with antibiotic properties, but the child's eyes and the gourd's shape and the species of the tree do not necessarily have anything to do with the cure.

In just this way, alchemy stumbled on some great truths but produced theoretical structures in which the line of reasoning between cause and effect was cluttered up with all sorts of irrelevant mystical and magical red herrings. This has discouraged modern science from investigating the source material, which is a pity, because we can probably still learn a great deal from a discipline that flourished for over two thousand years and included devotees such as Roger Bacon, Thomas Aquinas, Ben Jonson, and even Isaac Newton.

The role of sympathetic magic and of superstition in psychokinetic phenomena is undoubtedly a large one, but I believe that, even without these props, we now have enough evidence to warrant the serious consideration of PK as a biological reality. There is a long way to go before we understand how it works, but we can already begin to think about its evolutionary implications. In man the ability seems to be manifest mainly in children, or essentially childlike personalities, and then most often as a casual, almost accidental effect. It is apparently important to believe that the mind can influence matter, or at least not to disbelieve that it can. This suggests that its origins lie in some more primitive condition, which is preserved in the unconscious and later smothered by acquired cultural and intellectual pressures. But learning to produce PK effects on demand, by a conscious physical process, is probably a new development altogether.

We have no evidence as yet to suggest that any other species is capable of producing psychokinetic effects. We describe them as 'mind over matter', but consciousness may not be a necessary precondition for PK. It is possible that many organisms at all levels of development are capable of generating the force fields that seem to be responsible for action at a distance. If this is true, then the ability could well turn out to be a major biological determinant, forging even closer bonds between life and its environment than even the most visionary ecologists dreamed possible.

I suspect that Supernature holds many such surprises in store.

Next

NSB Cosmic Center Image

Home
N.S.B. Cosmic Center

NSB Cosmic Center Image